On the Korteweg — de Vries Equation and KAM Theory
Thomas Kappeler () and
Jürgen Pöschel ()
Additional contact information
Thomas Kappeler: Universität Zürich, Institut für Mathematik
Jürgen Pöschel: Universität Stuttgart, Mathematisches Institut A
A chapter in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp 397-416 from Springer
Abstract:
Abstract In this note we give an overview of results concerning the Korteweg-de Vries equation $$ {\text{u}}_t {\text{ = - u}}_{xxx} {\text{ + 6uu}}_x $$ and small perturbations of it. All the technical details will be contained in our forthcoming book [27].
Keywords: Vries Equation; Invariant Torus; Quasiperiodic Solution; Birkhoff Normal Form; Nonlinear Schr6dinger Equation (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-55627-2_20
Ordering information: This item can be ordered from
http://www.springer.com/9783642556272
DOI: 10.1007/978-3-642-55627-2_20
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().