EconPapers    
Economics at your fingertips  
 

On the Korteweg — de Vries Equation and KAM Theory

Thomas Kappeler () and Jürgen Pöschel ()
Additional contact information
Thomas Kappeler: Universität Zürich, Institut für Mathematik
Jürgen Pöschel: Universität Stuttgart, Mathematisches Institut A

A chapter in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp 397-416 from Springer

Abstract: Abstract In this note we give an overview of results concerning the Korteweg-de Vries equation $$ {\text{u}}_t {\text{ = - u}}_{xxx} {\text{ + 6uu}}_x $$ and small perturbations of it. All the technical details will be contained in our forthcoming book [27].

Keywords: Vries Equation; Invariant Torus; Quasiperiodic Solution; Birkhoff Normal Form; Nonlinear Schr6dinger Equation (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-55627-2_20

Ordering information: This item can be ordered from
http://www.springer.com/9783642556272

DOI: 10.1007/978-3-642-55627-2_20

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-642-55627-2_20