EconPapers    
Economics at your fingertips  
 

Linearization of Isotropic Automorphisms of Non-quadratic Elliptic CR-Manifolds in ℂ4

Vladimir V. Ežov () and Gerd Schmalz ()
Additional contact information
Vladimir V. Ežov: University of South Australia, School of Mathematics
Gerd Schmalz: der Universität Bonn, Mathematisches Institut

A chapter in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp 89-103 from Springer

Abstract: Abstract In 1974 Chern and Moser [4] constructed normal forms for real-analytic hypersurfaces with non-degenerate Levi-form in ℂ n +1. For a real-analytic hypersurface M in ℂ2 this means that there are local coordinates z, w centered in 0 ∈ M such that the equation of M takes the form 1 $$ M:\operatorname{Im} w = \left| z \right|^2 + \sum\limits_{\begin{array}{*{20}c} {k,l \geqslant 2} \\ {\max (k,l) \geqslant 4} \\ \end{array} } {n_{kl} } (\operatorname{Re} w)z^k z^{ - l} . $$

Keywords: Normal Form; Isotropy Group; Real Hypersurface; Invariant Chain; Levi Form (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-55627-2_6

Ordering information: This item can be ordered from
http://www.springer.com/9783642556272

DOI: 10.1007/978-3-642-55627-2_6

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-642-55627-2_6