EconPapers    
Economics at your fingertips  
 

Variations on a Theme by Mikhlin

Joseph Nieto

A chapter in Contributions to Functional Analysis, 1966, pp 331-336 from Springer

Abstract: Abstract In [5] Mikhlin develops the L 2 theory of singular integral operators on a simple closed plane curve Γ of class C 2. His main results are: (a) The operator H, defined by % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaGGOaGaamisa8aacaaMh8+dbiabeA8aQjaacMcapaGaaG5bV-qa % caGGOaGaamOEaiaacMcapaGaaG5bV-qacqGH9aqppaGaaG5bV-qada % WcaaWdaeaapeGaaGymaaWdaeaapeGaeqiWdaNaamyAaaaadaWdrbWd % aeaapeWaaSaaa8aabaWdbiabeA8aQjaacIcacqaH2oGEcaGGPaaapa % qaa8qacqaH2oGEpaGaaG5bV-qacqGHsislpaGaaG5bV-qacaWG6baa % aiaadsgacqaH2oGEcaGGSaWdaiaayEW7peGaamOEa8aacaaMh8+dbi % abgIGio-aacaaMh8+dbiabfo5ahbWcpaqaa8qacqqHtoWraeqaniab % gUIiYdaaaa!642B! $$(H{\mkern 1mu} \varphi ){\mkern 1mu} (z){\mkern 1mu} = {\mkern 1mu} \frac{1}{{\pi i}}\int\limits_\Gamma {\frac{{\varphi (\zeta )}}{{\zeta {\mkern 1mu} - {\mkern 1mu} z}}d\zeta ,{\mkern 1mu} z{\mkern 1mu} \in {\mkern 1mu} \Gamma } $$ is a linear bounded operator from L 2(Γ) into L 2(Γ).

Keywords: Banach Space; Compact Operator; Elliptic Operator; Compact Manifold; Closed Operator (search for similar items in EconPapers)
Date: 1966
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-85997-7_21

Ordering information: This item can be ordered from
http://www.springer.com/9783642859977

DOI: 10.1007/978-3-642-85997-7_21

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-642-85997-7_21