Variations on a Theme by Mikhlin
Joseph Nieto
A chapter in Contributions to Functional Analysis, 1966, pp 331-336 from Springer
Abstract:
Abstract In [5] Mikhlin develops the L 2 theory of singular integral operators on a simple closed plane curve Γ of class C 2. His main results are: (a) The operator H, defined by % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaGGOaGaamisa8aacaaMh8+dbiabeA8aQjaacMcapaGaaG5bV-qa % caGGOaGaamOEaiaacMcapaGaaG5bV-qacqGH9aqppaGaaG5bV-qada % WcaaWdaeaapeGaaGymaaWdaeaapeGaeqiWdaNaamyAaaaadaWdrbWd % aeaapeWaaSaaa8aabaWdbiabeA8aQjaacIcacqaH2oGEcaGGPaaapa % qaa8qacqaH2oGEpaGaaG5bV-qacqGHsislpaGaaG5bV-qacaWG6baa % aiaadsgacqaH2oGEcaGGSaWdaiaayEW7peGaamOEa8aacaaMh8+dbi % abgIGio-aacaaMh8+dbiabfo5ahbWcpaqaa8qacqqHtoWraeqaniab % gUIiYdaaaa!642B! $$(H{\mkern 1mu} \varphi ){\mkern 1mu} (z){\mkern 1mu} = {\mkern 1mu} \frac{1}{{\pi i}}\int\limits_\Gamma {\frac{{\varphi (\zeta )}}{{\zeta {\mkern 1mu} - {\mkern 1mu} z}}d\zeta ,{\mkern 1mu} z{\mkern 1mu} \in {\mkern 1mu} \Gamma } $$ is a linear bounded operator from L 2(Γ) into L 2(Γ).
Keywords: Banach Space; Compact Operator; Elliptic Operator; Compact Manifold; Closed Operator (search for similar items in EconPapers)
Date: 1966
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-85997-7_21
Ordering information: This item can be ordered from
http://www.springer.com/9783642859977
DOI: 10.1007/978-3-642-85997-7_21
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().