Positionierung induktiv geladener Fahrzeuge
Peter Roch (),
Bijan Shahbaz Nejad (),
Marcus Handte () and
Pedro J. Marrón ()
Additional contact information
Peter Roch: Universität Duisburg-Essen
Bijan Shahbaz Nejad: Universität Duisburg-Essen
Marcus Handte: Universität Duisburg-Essen
Pedro J. Marrón: Universität Duisburg-Essen
A chapter in Induktive Taxiladung für den öffentlichen Raum, 2023, pp 93-142 from Springer
Abstract:
Zusammenfassung Ziel des TALAKO Projekts ist es, kabelloses Laden von Elektrofahrzeugen im öffentlichen Raum zu ermöglichen. Induktives Laden erfordert eine präzise Ausrichtung des Fahrzeugs, um einen effizienten Ladevorgang zu gewährleisten. Dabei hat die Ausrichtung des Fahrzeugs direkten Einfluss auf den Wirkungsgrad. Der Positionierungsvorgang kann für den Fahrer herausfordernd sein, da er den Versatz der Ladekomponenten ohne weitere Unterstützung nicht wahrnehmen kann. Daher umfasst die entwickelte Anlage neben der induktiven Ladeinfrastruktur selbst ebenfalls ein kamerabasiertes Fahrerassistenzsystem. Das Fahrerassistenzsystem wird dazu genutzt, anfahrende Fahrzeuge zu erkennen und den Fahrer beim Positionierungsvorgang zu unterstützen. Es besteht aus zwei Komponenten: einem kamerabasierten Positionierungssystem und einer Fahrerleitanwendung. Das Positionierungssystem nutzt Kamerabilder, um die Position von Fahrzeugen mit einer Genauigkeit von 5 cm zu berechnen. Daraus wird der Abstand zwischen Fahrzeug und Ladeplatte abgeleitet. Die Fahrerleitanwendung interpretiert die Positionsinformationen und generiert daraufhin geeignete Anweisungen für den Fahrer. Das Positionierungssystem basiert auf einem neuronalen Netz, welches die Reifen des Fahrzeugs erkennt. Da der Abstand zwischen den Reifen bekannt ist, kann daraus die Position und Rotation des Fahrzeugs errechnet werden. Untersuchungen haben ergeben, dass die Genauigkeit im Bereich von 5 cm liegt. Um das Positionierungssystem unabhängig vom Fahrzeugtyp und Installationsort zu betreiben, muss es entsprechend konfiguriert werden. Dazu muss das neuronale Netz trainiert und die Kameraausrichtung kalibriert werden. Das Training des neuronalen Netzes wird mit synthetisch generierten Bildern ergänzt, welche mit einem eigens entwickelten Bildgenerator produziert werden können. Die Kameraausrichtung wird mit einem speziellen Muster bestimmt, welches an verschiedenen Stellen auf dem Untergrund platziert wird. Da die realen Maße des Musters bekannt sind, lässt sich daraus die Geometrie des Installationsortes ableiten. Im Rahmen einer Nutzerstudie wurde untersucht, welche Bildschirmmodalität für die Fahrerleitanwendung unter den gegebenen Umständen optimal eingesetzt werden kann. Die Studie hat ergeben, dass Nutzer einen im Fahrzeug befindlichen Bildschirm für die Ausgabe von Anweisungen bevorzugen. Daher wurde die Fahrerleitanwendung durch eine mobile Anwendung realisiert. Diese zeigt dem Fahrer die Position des Fahrzeugs in Relation zur Ladestation an. Für die Darstellung der räumlichen Relationen wurden verschiedene Visualisierungen miteinander verglichen. Mit mehreren Visualisierungen sind die Nutzer in der Lage, das Fahrzeug in einem Toleranzbereich von 5 cm zu positionieren. Die meisten Nutzer bevorzugen jedoch eine Darstellung aus der Vogelperspektive. Die Kommunikation der beiden Komponenten wurde mittels Bluetooth Low Energy umgesetzt. Im Gegensatz zu anderen drahtlosen Kommunikationsmöglichkeiten, wie z. B. WLAN, bietet dies den Vorteil, dass Informationen ohne Verzögerung eines Verbindungsaufbaus an die mobile Anwendung gesendet werden können. Dadurch kann der Fahrer unmittelbar nach Ankunft an der Anlage die Positionierung verzögerungsfrei starten. Das Gesamtsystem wurde prototypisch bei einem Taxiunternehmen in Mülheim a. d. R. (Auto Stephany GmbH (2012) Auto Stephany GmbH – Taxi Dienstleistungen. Abgerufen am 04. 08. 2022 von https://taxi-stephany.de/ ) in Betrieb genommen und über mehrere Monate iterativ optimiert. Während dieser Zeit wurden wertvolle Erfahrungen gesammelt, die dazu beigetragen haben, dass sowohl das Positionierungssystem als auch die Fahrerleitanwendung stetig verbessert wurden. Nach Abschluss der Optimierungen konnte das entwickelte System erfolgreich als Bestandteil der Pilotanlage in Köln mit mehreren Ladeplätzen eingesetzt werden. Da die Pilotanlage in Köln im öffentlichen Raum betrieben wird, müssen die Persönlichkeitsrechte einzelner Personen beachtet werden. Eine explizite Einwilligung in die Datenverarbeitung durch die Betroffenen ist jedoch nicht praktikabel. Daher wurde eine automatisierte Verschleierung eingesetzt, welche personenbezogene Daten wie Kennzeichen und Gesichter aus den Kamerabildern entfernt, um eine Verarbeitung zu vermeiden.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-658-39979-5_5
Ordering information: This item can be ordered from
http://www.springer.com/9783658399795
DOI: 10.1007/978-3-658-39979-5_5
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().