EconPapers    
Economics at your fingertips  
 

Representations of a Kac Algebra; Dual Kac Algebra

Michel Enock and Jean-Marie Schwartz
Additional contact information
Michel Enock: Université Pierre et Marie Curie, CNRS, Laboratoire de Mathématiques Fondamentales
Jean-Marie Schwartz: Université Pierre et Marie Curie, CNRS, Laboratoire de Mathématiques Fondamentales

Chapter Chapter 3 in Kac Algebras and Duality of Locally Compact Groups, 1992, pp 83-123 from Springer

Abstract: Abstract In this chapter, we shall use the notations hereafter: K = (M, Г, k, ϕ) will be a Kac algebra, λ its Fourier representation, W its fundamental operator and M the von Neumann algebra generated by λ. This chapter deals with the representations of the Banach algebra M*, following Kirchberg ([79]) and de Cannière and the authors ([21]), and the construction of the dual Kac algebra, as found independently by the authors ([34]) and Vainermann and Kac ([180]).

Keywords: Compact Group; Banach Algebra; Fourier Representation; Fundamental Operator; Modular Operator (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-02813-1_4

Ordering information: This item can be ordered from
http://www.springer.com/9783662028131

DOI: 10.1007/978-3-662-02813-1_4

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-662-02813-1_4