The Category of Kac Algebras
Michel Enock and
Jean-Marie Schwartz
Additional contact information
Michel Enock: Université Pierre et Marie Curie, CNRS, Laboratoire de Mathématiques Fondamentales
Jean-Marie Schwartz: Université Pierre et Marie Curie, CNRS, Laboratoire de Mathématiques Fondamentales
Chapter Chapter 5 in Kac Algebras and Duality of Locally Compact Groups, 1992, pp 161-191 from Springer
Abstract:
Abstract In what follows, $${{\rm K}_1} = \left( {{M_1},{\Gamma _1},{k_1},{\varphi _1}} \right) $$ and $${{\rm K}_2} = \left( {{M_2},{\Gamma _2}{k_2},{\varphi _2}} \right) $$ are two Kac algebras, $$\widehat {\rm K} = \left( {\widehat {{M_1}},\widehat {{\Gamma _1}},\widehat {{k_1}},\widehat {{\varphi _1}}} \right) $$ and $$\widehat {{{\rm K}_2}} = \left( {\widehat {{M_2}},\widehat {{\Gamma _2}},\widehat {{k_2}},\widehat {{\varphi _2}}} \right) $$ their duals.
Date: 1992
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-02813-1_6
Ordering information: This item can be ordered from
http://www.springer.com/9783662028131
DOI: 10.1007/978-3-662-02813-1_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().