EconPapers    
Economics at your fingertips  
 

A General Cyclic Lemma for Multiset Permutation Inversions

Sara Brunetti (), Alberto Del Lungo () and Francesco Del Ristoro ()
Additional contact information
Sara Brunetti: Dipartimento di Sistemi e Informatica
Alberto Del Lungo: Dipartimento di Matematica
Francesco Del Ristoro: Dipartimento di Sistemi e Informatica

A chapter in Formal Power Series and Algebraic Combinatorics, 2000, pp 135-145 from Springer

Abstract: Abstract The purpose of this paper is to present some enumerative results concerning the permutations of the multiset $$\left\{ {\chi \frac{{m1}}{1},\chi \frac{{m2}}{2}, \ldots ,\chi \frac{{mr}}{r}} \right\}$$ having inversion number congruent to k modulo n, with k

Keywords: Multiset; Permutation; Inversion; Major; cyclic shift; combinatorial proof; modular equation. (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-04166-6_12

Ordering information: This item can be ordered from
http://www.springer.com/9783662041666

DOI: 10.1007/978-3-662-04166-6_12

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-662-04166-6_12