A General Cyclic Lemma for Multiset Permutation Inversions
Sara Brunetti (),
Alberto Del Lungo () and
Francesco Del Ristoro ()
Additional contact information
Sara Brunetti: Dipartimento di Sistemi e Informatica
Alberto Del Lungo: Dipartimento di Matematica
Francesco Del Ristoro: Dipartimento di Sistemi e Informatica
A chapter in Formal Power Series and Algebraic Combinatorics, 2000, pp 135-145 from Springer
Abstract:
Abstract The purpose of this paper is to present some enumerative results concerning the permutations of the multiset $$\left\{ {\chi \frac{{m1}}{1},\chi \frac{{m2}}{2}, \ldots ,\chi \frac{{mr}}{r}} \right\}$$ having inversion number congruent to k modulo n, with k
Keywords: Multiset; Permutation; Inversion; Major; cyclic shift; combinatorial proof; modular equation. (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-04166-6_12
Ordering information: This item can be ordered from
http://www.springer.com/9783662041666
DOI: 10.1007/978-3-662-04166-6_12
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().