On the Congruent Number Problem
Peng Tsu Ann
Additional contact information
Peng Tsu Ann: National University of Singapore Kent Ridge, Department of Mathematics
A chapter in International Symposium in Memory of Hua Loo Keng, 1991, pp 231-234 from Springer
Abstract:
Abstract Let A be a square—free positive integer. Suppose that A is a congruent number, i.e., suppose that there exist positive rational numbers X, Y, Z such that % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGyb % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamywamaaCaaaleqabaGa % aGOmaaaakiabg2da9iaadQfadaahaaWcbeqaaiaaikdaaaGccaGGSa % aabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGybGaamywaiabg2da % 9iaadgeacaGGUaaaaaa!43C7! $$\begin{gathered} {X^2} + {Y^2} = {Z^2}, \hfill \\ \frac{1}{2}XY = A. \hfill \\ \end{gathered} $$
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-07981-2_13
Ordering information: This item can be ordered from
http://www.springer.com/9783662079812
DOI: 10.1007/978-3-662-07981-2_13
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().