On the Even Part of BSD Conjecture for Elliptic Curves with Complex Multiplication by % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSijHi6aam % WaaeaacaaMi8+aaSaaaeaacaaIXaGaey4kaSYaaOaaaeaacqGHsisl % caaI3aaaleqaaaGcbaGaaGOmaaaacaaMi8oacaGLBbGaayzxaaaaaa!40BD! $$\mathbb{Z}\left[ {{\kern 1pt} \frac{{1 + \sqrt { - 7} }}{2}{\kern 1pt} } \right]$$
Keqin Feng
Additional contact information
Keqin Feng: University of Science and Technology of China
A chapter in International Symposium in Memory of Hua Loo Keng, 1991, pp 43-57 from Springer
Abstract:
Abstract The even part of Birch and Swinnerton-Dyer conjecture are varified for a series of elliptic curves with complex multiplication % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSijHi6aam % WaaeaacaaMi8+aaSaaaeaacaaIXaGaey4kaSYaaOaaaeaacqGHsisl % caaI3aaaleqaaaGcbaGaaGOmaaaacaaMi8oacaGLBbGaayzxaaaaaa!40BD! $$\mathbb{Z}\left[ {{\kern 1pt} \frac{{1 + \sqrt { - 7} }}{2}{\kern 1pt} } \right]$$ .
Keywords: Elliptic Curve; Complex Multiplication; Elliptic Curf; Integer Solution; Ideal Class Group (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-07981-2_4
Ordering information: This item can be ordered from
http://www.springer.com/9783662079812
DOI: 10.1007/978-3-662-07981-2_4
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().