EconPapers    
Economics at your fingertips  
 

Solutions

Vladimir Shikhman () and David Müller ()
Additional contact information
Vladimir Shikhman: Chemnitz University of Technology
David Müller: Chemnitz University of Technology

Chapter 10 in Mathematical Foundations of Big Data Analytics, 2021, pp 193-263 from Springer

Abstract: Abstract The transition matrix of the network N1 is P = 0 0 1 1 ∕ 3 1 ∕ 3 1 0 0 0 1 ∕ 3 0 1 ∕ 2 0 1 ∕ 3 1 ∕ 3 0 1 ∕ 2 0 0 0 0 0 0 1 ∕ 3 0 . $$\displaystyle P = \left ( \begin {array}{cccccc} 0& 0 & 1 & {1}/{3}&{1}/{3} \\ 1& 0 & 0 & 0& {1}/{3}\\ 0& {1}/{2} & 0 & {1}/{3}& {1}/{3}\\ 0 & {1}/{2} & 0& 0& 0\\ 0& 0 & 0 & {1}/{3}& 0\\ \end {array} \right ). $$

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-62521-7_10

Ordering information: This item can be ordered from
http://www.springer.com/9783662625217

DOI: 10.1007/978-3-662-62521-7_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:spr:sprchp:978-3-662-62521-7_10