Solutions
Vladimir Shikhman () and
David Müller ()
Additional contact information
Vladimir Shikhman: Chemnitz University of Technology
David Müller: Chemnitz University of Technology
Chapter 10 in Mathematical Foundations of Big Data Analytics, 2021, pp 193-263 from Springer
Abstract:
Abstract The transition matrix of the network N1 is P = 0 0 1 1 ∕ 3 1 ∕ 3 1 0 0 0 1 ∕ 3 0 1 ∕ 2 0 1 ∕ 3 1 ∕ 3 0 1 ∕ 2 0 0 0 0 0 0 1 ∕ 3 0 . $$\displaystyle P = \left ( \begin {array}{cccccc} 0& 0 & 1 & {1}/{3}&{1}/{3} \\ 1& 0 & 0 & 0& {1}/{3}\\ 0& {1}/{2} & 0 & {1}/{3}& {1}/{3}\\ 0 & {1}/{2} & 0& 0& 0\\ 0& 0 & 0 & {1}/{3}& 0\\ \end {array} \right ). $$
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-62521-7_10
Ordering information: This item can be ordered from
http://www.springer.com/9783662625217
DOI: 10.1007/978-3-662-62521-7_10
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().