Neuronale Netze
Sven-Ake Wegner ()
Chapter Kapitel 16 in Mathematische Einführung in Data Science, 2023, pp 229-264 from Springer
Abstract:
Zusammenfassung In diesem Kapitel beschäftigen wir uns mit künstlichen neuronalen Netzen. Nach einigen einfachen Beispielen zur exakten Darstellung boolscher Funktionen durch neuronale Netze mit Heaviside-Aktivierung diskutieren wir die gleichmäßige Approximation stetiger Funktionen durch flache bzw. tiefe neuronale Netze. Höhepunkte sind die Sätze von Cybenko, Leshno-Lin-Pinkus-Schocken und Hanin. Im zweiten Teil des Kapitels diskutieren wir die Methode der Rückwärtspropagation (englisch: Backpropagation) mit der die Gewichte und Bias eines neuronalen Netzes an eine gegebene Datenmenge angepasst werden können. Wir behandeln hier zuerst tiefe neuronale Netze mit linearem Ausgang, welche z.B. als Regressoren für kontinuierlich gelabelte Daten benutzt werden können. Anschließend betrachten wir tiefe neuronale Netze mit Softmaxausgang. Letztere eignen sich z.B. gut für one-hot-kodierte Datenmengen, wie sie bei der Handschrifterkennung auftreten.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-68697-3_16
Ordering information: This item can be ordered from
http://www.springer.com/9783662686973
DOI: 10.1007/978-3-662-68697-3_16
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().