EconPapers    
Economics at your fingertips  
 

Entfernung und Zusammenhang

Constantin Carathéodory
Additional contact information
Constantin Carathéodory: Universität München

Chapter Kapitel IV in Vorlesungen über Reelle Funktionen, 1927, pp 191-229 from Springer

Abstract: Zusammenfassung Unter Entfernung von zwei Punkten P und Q des n-dimensionalen Raumes mit den Koordinaten 1 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaGabaWdaeaafaqabeGabaaabaWdbiaadcfacaGG6aGaamiEa8aa % daWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiEa8aadaWgaa % WcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaaiilaiaadIha % paWaaSbaaSqaa8qacaWGUbaapaqabaaakeaapeGaamyuaiaacQdaca % WG5bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWG5bWd % amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSa % GaamyEa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaaak8qacaGL7baa % aaa!4F3A! $$ \left\{ {\begin{array}{*{20}{c}} {P:{{x}_{1}},{{x}_{2}}, \ldots ,{{x}_{n}}} \\ {Q:{{y}_{1}},{{y}_{2}}, \ldots ,{{y}_{n}}} \\ \end{array} } \right. $$ versteht man den Ausdruck 2 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacI % cacaWGqbGaaiilaiaadgfacaGGPaGaeyypa0JaamyraiaacIcacaWG % rbGaaiilaiaadcfacaGGPaGaeyypa0ZaaOaaaeaacaGGOaGaamiEam % aaBaaaleaacaaIXaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGym % aaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikai % aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqa % aiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRi % abl+UimjabgUcaRiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa % eyOeI0IaamyEamaaBaaaleaacaWGUbaabeaakiaacMcadaahaaWcbe % qaaiaad6gaaaaabeaaaaa!5B4A! $$ E(P,Q) = E(Q,P) = \sqrt {{{({x_1} - {y_1})}^2} + {{({x_2} - {y_2})}^2} + \cdots + {{({x_2} - {y_n})}^n}} $$ .

Date: 1927
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-663-15768-7_5

Ordering information: This item can be ordered from
http://www.springer.com/9783663157687

DOI: 10.1007/978-3-663-15768-7_5

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-09
Handle: RePEc:spr:sprchp:978-3-663-15768-7_5