Das Kegelschnittgewebe und seine Hessesche Kurve
Hermann Grassmann
Chapter Abschnitt 57 in Projektive Geometrie der Ebene Unter Benutzung der Punktrechnung Dargestellt, 1927, pp 330-345 from Springer
Abstract:
Zusammenfassung Es seien P, Q, R die extensiven Brüche für drei Polarsysteme zweiter Klasse, die linear unabhängig voneinander sind, die also nicht einer und derselben Schar von Polarsystemen angehören, und es sei: 1 P = a 1 , a 2 , a 3 E 1 , E 2 , E 8 , $$ P = \frac{{a_1 ,a_2 ,a_3 }} {{E_1 ,E_2 ,E_8 }}, $$ 2 Q = b 1 , b 2 , b 3 E 1 , E 2 , E 3 , $$ P = \frac{{a_1 ,a_2 ,a_3 }} {{E_1 ,E_2 ,E_8 }}, $$ 3 R = c 1 , c 2 , c 3 E 1 , E 2 , E 3 . $$ R = \frac{{c_1 ,c_2 ,c_3 }} {{E_1 ,E_2 ,E_3 }}. $$
Date: 1927
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-663-15843-1_19
Ordering information: This item can be ordered from
http://www.springer.com/9783663158431
DOI: 10.1007/978-3-663-15843-1_19
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().