EconPapers    
Economics at your fingertips  
 

Analytic approach to Yor’s formula of exponential additive functionals of Brownian motion

Shin-ichi Kotani
Additional contact information
Shin-ichi Kotani: Osaka University, Department of Mathematics, Graduate School of Science

A chapter in Itô’s Stochastic Calculus and Probability Theory, 1996, pp 185-195 from Springer

Abstract: Abstract Yor [4] obtained an exact formula for a one-dimensional Brownian motion {B t }: $${{E}_{0}}(f(\int_{0}^{t}{{{e}^{2{{B}_{S}}}}d}s)g({{e}^{{{B}_{t}}}}))=c(t)\int_{0}^{\infty }{dzg(y)f(\frac{1}{z})}\exp \left\{ -\frac{z(1+{{y}^{2}})}{2}{{\psi }_{yz}}(t) \right\},$$ $$c(t)={{(2{{\pi }^{3}}t)}^{-\frac{1}{2}}}\exp (\frac{{{\pi }^{2}}}{2t}),{{\psi }_{r}}(t)=\int_{0}^{\infty }{\exp }(-\frac{{{u}^{2}}}{2t}-\gamma \cosh u)\sinh u\sin (\frac{\pi u}{t})du.$$

Keywords: Green Function; Heat Kernel; Neumann Boundary Condition; Additive Functional; Tauberian Theorem (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-4-431-68532-6_12

Ordering information: This item can be ordered from
http://www.springer.com/9784431685326

DOI: 10.1007/978-4-431-68532-6_12

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-4-431-68532-6_12