EconPapers    
Economics at your fingertips  
 

A Topological Banach Space Model of Linear Logic

Heinrich Kleisli, Hans-Peter Künzi and Jiří Rosický
Additional contact information
Heinrich Kleisli: University of Fribourg, Math. Institute
Hans-Peter Künzi: University of Berne, Math. Institute
Jiří Rosický: Masaryk University, Dept. of Algebra and Geometry

A chapter in Categorical Topology, 1996, pp 155-162 from Springer

Abstract: Abstract We will show that the category V of topological Banach balls (introduced by M. Barr [1] - [3]) is a model of the full linear logic. The cotripel ! on V is constructed from the adjointness between V and the cartesian closed category of Hausdorff topological spaces and k-continuous maps.

Keywords: Saks space; *-autonomous category; linear logic; 46A70; 18D15 (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-009-0263-3_15

Ordering information: This item can be ordered from
http://www.springer.com/9789400902633

DOI: 10.1007/978-94-009-0263-3_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-94-009-0263-3_15