EconPapers    
Economics at your fingertips  
 

Three Remarks about the Carathéodory Distance

Marek Jarnicki and Peter Pflug
Additional contact information
Marek Jarnicki: Jagiellonian University, Institute of Mathematics
Peter Pflug: Universita̎t Osnabru̎ck, Abteilung Vechta, Mathematik

A chapter in Deformations of Mathematical Structures, 1989, pp 161-170 from Springer

Abstract: Abstract Let D be a domain in ℂn. The Carathéodory pseudodistance cD on D is defined by $$ {c_D}(z',z'') = 1/2\log \frac{{1 + c_D^{*}(z',z'')}}{{1 - c_D^{*}(z',z'')}} $$ , where c D * denotes the Mo̎bius function $$ c_D^{*}\left( {z',z''} \right) = \sup \left\{ {\left| {f\left( {z''} \right)} \right|:f:D \to E holomorphic,f\left( {z'} \right) = 0} \right\} $$ ; here E is the unit disc in the complex plane. The Carathéodory pseudodistance is a very useful tool in complex analysis. For its standard properties we refer, for example, to the book by T. Frazoni-E. Vesentini [4].

Keywords: Holomorphic Function; Unit Disc; Product Formula; Schwarz Lemma; Reinhardt Domain (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-009-2643-1_15

Ordering information: This item can be ordered from
http://www.springer.com/9789400926431

DOI: 10.1007/978-94-009-2643-1_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-94-009-2643-1_15