EconPapers    
Economics at your fingertips  
 

The Main Theorems of Linear Programming

F. P. Vasilyev and A. Yu. Ivanitskiy
Additional contact information
F. P. Vasilyev: Moscow State University
A. Yu. Ivanitskiy: Chuvash State University

Chapter Chapter 2 in In-Depth Analysis of Linear Programming, 2001, pp 79-118 from Springer

Abstract: Abstract Recall that the general problem of linear programming can be formulated as follows: (2.1.1) % MathType!Translator!2!1!LaTeX.tdl!TeX -- LaTeX 2.09 and later! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb % GaaiikaiaadIhacaGGPaGaeyypa0ZaaaWaaeaacaWGJbGaaiilaiaa % dIhaaiaawMYicaGLQmcacqGH9aqpdaaadaqaaiaadogadaWgaaWcba % GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIXaaabeaaaOGa % ayzkJiaawQYiaiabgUcaRmaaamaabaGaam4yamaaBaaaleaacaaIYa % aabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLPmIa % ayPkJaGaeyOKH4QaciyAaiaac6gacaGGMbGaaiilaiaadIhacqGH9a % qpdaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE % amaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgIGiolaadI % facaGGSaaabaGaamiwaiabg2da9maaceaabaGaamiEaiabg2da9maa % bmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS % baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaiOoaiaadIhaaiaa % wUhaamaaBaaaleaacaaIXaaabeaakiabgIGiolaadweadaahaaWcbe % qaaiaad6gacaaIXaaaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqa % baGccqGHiiIZcaWGfbWaaWbaaSqabeaacaWGUbGaaGOmaaaakiaacY % cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyyzImRaaGimaiaacYca % aeaacaWGbbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadIhadaWgaa % WcbaGaaGymaaqabaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaigdacaaI % YaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHKjYOcaWGIb % GaaiilaiaadgeadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamiEamaa % BaaaleaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmai % aaikdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9maa % ciaabaGaamOyamaaBaaaleaacaaIYaaabeaaaOGaayzFaaaaaaa!96D8! $$ \begin{array}{l}f(x) = \left\langle {c,x} \right\rangle = \left\langle {{c_1},{x_1}} \right\rangle + \left\langle {{c_2},{x_2}} \right\rangle \to \inf ,x = \left( {{x_1},{x_2}} \right) \in X, \\X = {\left\{ {x = \left( {{x_1},{x_2}} \right):x} \right._1} \in {E^{n1}},{x_2} \in {E^{n2}},{x_1} \ge 0, \\{A_{11}}{x_1} + {A_{12}}{x_2} \le b,{A_{21}}{x_1} + {A_{22}}{x_2} = \left. {{b_2}} \right\} \\\end{array} $$ where A ij are m i × n j matrices, c j ∈ Enj, bi ∈E mi , i,j = 1,2. As before, we denote f * = inf x∈X f(x) assuming that X ∈ Ø. For the case where f * > -∞ we introduce a set % MathType!Translator!2!1!LaTeX.tdl!TeX -- LaTeX 2.09 and later! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa % aaleaacaGGQaaabeaakiabg2da9maacmaabaGaamiEaiabgIGiolaa % dIfacaGG6aGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAeada % WgaaWcbaGaaiOkaaqabaaakiaawUhacaGL9baaaaa!44FC! $$ {X_*} = \left\{ {x \in X:f(x) = {F_*}} \right\} $$ . Recall that problem (2.1.1) is solvable if X* ≠ Ø; every point x* ∈ X* is a solution of this problem.

Date: 2001
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-015-9759-3_2

Ordering information: This item can be ordered from
http://www.springer.com/9789401597593

DOI: 10.1007/978-94-015-9759-3_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-94-015-9759-3_2