EconPapers    
Economics at your fingertips  
 

Preliminaries

Kazimierz Głazek
Additional contact information
Kazimierz Głazek: University of Zielona Góra, Institute of Mathematics

Chapter 1 in A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, 2002, pp 7-9 from Springer

Abstract: Abstract By a semiring (S; +, •) we understand a general algebra with two binary associative operations fulfilling the following distributive laws: 1 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bGaai4Tamaabmaapaqaa8qacaWG5bGaey4kaSIaamOEaaGa % ayjkaiaawMcaaiabg2da9iaadIhacaGG3cGaamyEaiabgUcaRiaadI % hacaGG3cGaamOEaaaa!4528! $$x\cdot \left( {y + z} \right) = x\cdot y + x\cdot z$$ and 2 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaWdaeaapeGaamyEaiabgUcaRiaadQhaaiaawIcacaGLPaaa % caGG3cGaamiEaiabg2da9iaadMhacaGG3cGaamOEaiabgUcaRiaadQ % hacaGG3cGaamiEaaaa!452A! $$\left( {y + z} \right)\cdot x = y\cdot z + z\cdot x$$ for all x, y, z ∈ S. If the addition is commutative and has a neutral element 0 (i.e. if (S; +) is a commutative monoid), which is an annihilating (or absorbing) element, that 3 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bGaey4kaSIaamyEaiabg2da9iaadMhacqGHRaWkcaWG4baa % aa!3CD4! $$x + y = y + x$$ 4 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bGaey4kaSIaaGimaiabg2da9iaadIhacqGH9aqpcaaIWaGa % ey4kaSIaamiEaaaa!3E4F! $$x + 0 = x = 0 + x$$ 5 % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bGaai4TaiaaicdacqGH9aqpcaaIWaGaeyypa0JaaGimaiaa % cElacaWG4baaaa!3EBE! $$x\cdot 0 = 0 = 0\cdot x$$ for arbitrary x, y ∈ S, then (S; +, •) is said to be a hemiring (see the monographs by J.S. Golan [1992], [and such papers as K. Iizuka [1959], D.R. LaTorre [1965], D.M. Olson [1978], D.M. Olson & T.L. Jenkins [1983] and S.M. Yusuf & M. Shabir [1988]; note that there are some differences in terminology). If a semiring S has an element 0 with property (4), then S is called a semiring with zero. A semiring with zero and commutative addition is called (by some theoretical physicists and categorists) a rig (in the sense of “rings without negation”). Observe that, in general, the zero element does not need to be annihilating (see, e.g., K. Głazek [1968a]).

Keywords: Optimization Theory; Algebraic Theory; Zero Element; Neutral Element; Kluwer Acad (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-015-9964-1_2

Ordering information: This item can be ordered from
http://www.springer.com/9789401599641

DOI: 10.1007/978-94-015-9964-1_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-94-015-9964-1_2