The Combinatorics of Open Covers
Masami Sakai () and
Marion Scheepers ()
Additional contact information
Masami Sakai: Kanagawa University, Department of Mathematics
Marion Scheepers: Boise State University, Department of Mathematics
A chapter in Recent Progress in General Topology III, 2014, pp 751-799 from Springer
Abstract:
Abstract The combinatorics of open covers is a study of Cantor’s diagonal argument in various contexts. The field has its roots in a few basic selection principles that arose from the study of problems in analysis, dimension theory, topology and set theory. The reader will also find that some familiar works are appearing in new clothes in our survey. This is particularly the case in connection with such problems as determining the structure of compact scattered spaces and a number of classical problems in topology. We hope that the new perspective in which some of these classical enterprises are presented will lead to further progress. In this article we also attempt to give the reader an overview of the problems and techniques that are currently fueling much of the rapidly increasing current activity in the combinatorics of open covers.
Keywords: Topological Space; Open Cover; Winning Strategy; Metrizable Space; Selection Principle (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-94-6239-024-9_18
Ordering information: This item can be ordered from
http://www.springer.com/9789462390249
DOI: 10.2991/978-94-6239-024-9_18
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().