EconPapers    
Economics at your fingertips  
 

Data Envelopment Analysis: A Nonparametric Method of Production Analysis

Subhash Ray

Chapter 10 in Handbook of Production Economics, 2022, pp 409-470 from Springer

Abstract: Abstract In the Operations Research/Management Science literature, the nonparametric method of Data Envelopment Analysis (DEA) has gained wide popularity as a valid analytical format for efficiency evaluation. In economics, however, its reception has been far less enthusiastic. Yet, the intellectual roots of DEA go back to the seminal contributions to nonparametric analysis of production by Debreu, Shephard, Farrell, Afriat, and others. Over the past four decades, DEA has matured into a full blown non-parametric methodology for measuring productive efficiency that serves as an alternative to parametric Stochastic Frontier Analysis (SFA). Both grounded into the neoclassical theory of production, DEA and SFA provide the researcher alternative ways to calibrate testable relations between inputs, outputs, costs, revenue, and profit. Staring from the central concept of the Production Possibility set, this chapter provides a broad overview of the literature on DEA methodology for radial and non-radial measurement of technical efficiency from input and output quantity data under alternative returns to scale assumptions. This is followed by models for performance evaluation in the presence of market prices through cost, revenue, and overall profit efficiency- both in the long run when all inputs are variable and in the short run, when some inputs are fixed. DEA models for physical measures of the capacity output in the short run and economic measures of capacity in the long run are discussed. Alternative ways to incorporate the production of ‘bad’ or undesirable outputs collaterally with the ‘good’ or intended output in DEA models for efficiency measurement are presented. Finally, the role of contextual or environmental variables that affect efficiency is also discussed.

Keywords: Neoclassical production theory; Production efficiency; Returns to scale; Cost efficiency; Capacity utilization; Bad outputs (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-981-10-3455-8_24

Ordering information: This item can be ordered from
http://www.springer.com/9789811034558

DOI: 10.1007/978-981-10-3455-8_24

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:spr:sprchp:978-981-10-3455-8_24