Endomorphisms of BE-algebras
Sambasiva Rao Mukkamala ()
Additional contact information
Sambasiva Rao Mukkamala: MVGR College of Engineering, Department of Mathematics
Chapter Chapter 12 in A Course in BE-algebras, 2018, pp 337-356 from Springer
Abstract:
Abstract The term endomorphism is derived from the Greek adverb endon (“inside”) and morphosis (“to form” or “to shape”). In an algebra, an endomorphism of a group, module, ring, vector space, etc., is a homomorphism from the algebra to itself (with surjectivity not required). In 2001, Sergio Celani (Int J Math Math Sci, 29(1):55–61, 2002) [34] gave a representation theorem for Hilbert algebras by means of ordered sets and characterized the homomorphisms of Hilbert algebras in terms of applications defined between the sets of all irreducible deductive systems of the associated algebras. In [11], Chul Kon Bae (J Korea Soc Math Edu, 24(1):7–10, 1985) investigated some properties on homomorphisms in BCK-algebras. In his paper, he mainly studied the properties of the compositions of homomorphisms of BCK-algebras. In [46], Z. Chen, Y. Huang and E.H. Roh (Comm Korean Math Soc, 10(3):499–518, 1995) considered the centralizer C(S) of a given set with respect to the semigroup End(X) of all endomorphisms of an implicative BCK-algebras X with the condition (S). They obtained a series of interesting results those indicated the embedding of X into the centralizer C(S).
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-981-10-6838-6_12
Ordering information: This item can be ordered from
http://www.springer.com/9789811068386
DOI: 10.1007/978-981-10-6838-6_12
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().