EconPapers    
Economics at your fingertips  
 

A Brief Introduction to Index Functions

Chungen Liu
Additional contact information
Chungen Liu: Guangzhou University, School of Mathematical and Information Science

Chapter Chapter 2 in Index theory in nonlinear analysis, 2019, pp 23-34 from Springer

Abstract: Abstract For n ∈ ℕ $$n\in \mathbb {N}$$ , we recall that the symplectic group is defined as Sp ( 2 n ) ≡ S p ( 2 n , ℝ ) = { M ∈ ℒ ( ℝ 2 n ) ∣ M T J M = J } , $$\displaystyle \mathrm {Sp}(2n)\equiv Sp(2n,\mathbb {R})= \{M \in \mathcal L(\mathbb {R}^{2n}) \mid M^{T}JM=J \}, $$ where 0 − I n I n 0 $$\left ( \begin {array}{cc} 0 \ \ & -I_{n}\\ I_{n} & 0 \end {array} \right )$$ , I n is the identity matrix on ℝ n $${\mathbb R}^{n}$$ , and ℒ ( ℝ 2 n ) $$\mathcal L({\mathbb R}^{2n})$$ is the space of 2n × 2n real matrices. Without confusion, we shall omit the subindex of the identity matrices. For τ > 0, suppose H ∈ C 2 ( S τ × ℝ 2 n , ℝ ) $$H \in C^{2}(S_{\tau } \times \mathbb {R}^{2n}, \mathbb {R})$$ , where S τ ≡ ℝ ∕ ( τ ℤ ) $$S_{\tau } \equiv \mathbb {R}/(\tau \mathbb {Z})$$ .

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-981-13-7287-2_2

Ordering information: This item can be ordered from
http://www.springer.com/9789811372872

DOI: 10.1007/978-981-13-7287-2_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-981-13-7287-2_2