EconPapers    
Economics at your fingertips  
 

Maslov Type Index for Lagrangian Paths

Chungen Liu
Additional contact information
Chungen Liu: Guangzhou University, School of Mathematical and Information Science

Chapter Chapter 6 in Index theory in nonlinear analysis, 2019, pp 161-176 from Springer

Abstract: Abstract Let ( ℝ 2 n , ω ~ 0 ) $$({\mathbb R}^{2n},\tilde \omega _0)$$ be the standard symplectic space with ω ~ 0 = ∑ i = 1 n d x i ∧ d y i $$\tilde \omega _0=\displaystyle \sum _{i=1}^ndx_i\wedge dy_i$$ . For z i = ( x i , y i ) ∈ ℝ n × ℝ n , i = 1 , 2 $$z_i=(x_i,y_i)\in {\mathbb R}^n\times {\mathbb R}^n,\;i=1,2$$ , there holds ω ~ 0 ( z 1 , z 2 ) = 〈 x 1 , y 2 〉 − 〈 x 2 , y 1 〉 . $$\displaystyle \tilde \omega _0(z_1,z_2)=\langle x_1,y_2\rangle -\langle x_2,y_1\rangle . $$ A Lagrangian subspace L ⊂ ( ℝ 2 n , ω ~ 0 ) $$L\subset ({\mathbb R}^{2n},\tilde \omega _0)$$ is a dimensional n subspace with ω ~ 0 ( z 1 , z 2 ) = 0 $$\tilde \omega _0(z_1,z_2)=0$$ for all z 1, z 2 ∈ Lt

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-981-13-7287-2_6

Ordering information: This item can be ordered from
http://www.springer.com/9789811372872

DOI: 10.1007/978-981-13-7287-2_6

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-981-13-7287-2_6