Maslov Type Index for Lagrangian Paths
Chungen Liu
Additional contact information
Chungen Liu: Guangzhou University, School of Mathematical and Information Science
Chapter Chapter 6 in Index theory in nonlinear analysis, 2019, pp 161-176 from Springer
Abstract:
Abstract Let ( ℝ 2 n , ω ~ 0 ) $$({\mathbb R}^{2n},\tilde \omega _0)$$ be the standard symplectic space with ω ~ 0 = ∑ i = 1 n d x i ∧ d y i $$\tilde \omega _0=\displaystyle \sum _{i=1}^ndx_i\wedge dy_i$$ . For z i = ( x i , y i ) ∈ ℝ n × ℝ n , i = 1 , 2 $$z_i=(x_i,y_i)\in {\mathbb R}^n\times {\mathbb R}^n,\;i=1,2$$ , there holds ω ~ 0 ( z 1 , z 2 ) = 〈 x 1 , y 2 〉 − 〈 x 2 , y 1 〉 . $$\displaystyle \tilde \omega _0(z_1,z_2)=\langle x_1,y_2\rangle -\langle x_2,y_1\rangle . $$ A Lagrangian subspace L ⊂ ( ℝ 2 n , ω ~ 0 ) $$L\subset ({\mathbb R}^{2n},\tilde \omega _0)$$ is a dimensional n subspace with ω ~ 0 ( z 1 , z 2 ) = 0 $$\tilde \omega _0(z_1,z_2)=0$$ for all z 1, z 2 ∈ Lt
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-981-13-7287-2_6
Ordering information: This item can be ordered from
http://www.springer.com/9789811372872
DOI: 10.1007/978-981-13-7287-2_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().