EconPapers    
Economics at your fingertips  
 

Stochastic Interest Models

Jianwei Zhu ()
Additional contact information
Jianwei Zhu: Lucht Probst Associates

Chapter Chapter 6 in Applications of Fourier Transform to Smile Modeling, 2010, pp 135-152 from Springer

Abstract: Abstract The aim of this chapter is not to present a complete overview of stochastic interest rate models, but to show to which extend stochastic interest rates can be incorporated into a pricing formula for European-style stock options. To this end, we focus on only three typical one-factor short rate models, namely, the Vasicek model (1977), the CIR model (1985) and the Longstaff model (1989), which are again specified by a mean-reverting Ornstein-Uhlenbeck process, a mean-reverting square root process and a mean-reverting double square root process, respectively. In turn, these three processes correspond to these ones in stochastic volatility models discussed in Chapter 3. Since stochastic short rate appears in a risk-neutral stock process as drift, it becomes impossible for a square root process to incorporate a correlation between the short rate and the stock diffusion term with CFs. Therefore, we propose a modification of the stock price process so that the CIR model and the Longstaff model may be embedded into an option pricing formula. However, the mean-reverting Ornstein-Uhlenbeck process can be nested with the stock price process for a non-zero correlation without any modification. The extension of a one-factor stochastic interest rate models into a multi-factor case is straightforward, and some multi-factor models can be incorporated into the valuation of stock options in analogy to the one-factor model if the independence conditions are satisfied.

Keywords: Interest Rate; Stock Return; Option Price; Stochastic Volatility; Stochastic Volatility Model (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-01808-4_6

Ordering information: This item can be ordered from
http://www.springer.com/9783642018084

DOI: 10.1007/978-3-642-01808-4_6

Access Statistics for this chapter

More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-02
Handle: RePEc:spr:sprfcp:978-3-642-01808-4_6