EconPapers    
Economics at your fingertips  
 

Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times

Christophe Profeta (), Bernard Roynette () and Marc Yor
Additional contact information
Christophe Profeta: Université Nancy I
Bernard Roynette: Université Nancy I
Marc Yor: Université Paris VI

Chapter Chapter 2 in Option Prices as Probabilities, 2010, pp 21-63 from Springer

Abstract: Abstract Let (M t ,t≥0) be a positive, continuous local martingale such that $M_{t}\xrightarrow[t\rightarrow\infty]{}M_{\infty}=0$ a.s. In Section 2.1, we express the European put $\Pi(K,t):=\mathbb{E}\left[\left(K-M_{t}\right)^{+}\right]$ in terms of the last passage time $\mathcal {G}_{K}^{(M)}:=\sup\{t\geq0;M_{t}=K\}$ . In Section 2.2, under the extra assumption that (M t ,t≥0) is a true martingale, we express the European call $C(K,t):=\mathbb{E}\left[\left(M_{t}-K\right)^{+}\right]$ still in terms of the last passage time $\mathcal {G}_{K}^{(M)}$ . In Section 2.3, we shall give several examples of explicit computations of the law of $\mathcal {G}_{K}^{(M)}$ , and Section 2.4 will be devoted to the proof of a more general formula for this law. In Section 2.5, we recover, using the results of Section 2.1, Pitman-Yor’s formula for the law of $\mathcal {G}_{K}$ in the framework of transient diffusions. The next sections shall extend these results in different ways: In Section 2.6, we present an example where (M t ,t≥0) is no longer continuous, but only càdlàg without positive jumps, In Section 2.7, we remove the assumption M ∞=0, Finally, in Section 2.8, we consider the framework of several orthogonal local martingales.

Keywords: Brownian Motion; Passage Time; Local Martingale; Brownian Bridge; Bessel Process (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-10395-7_2

Ordering information: This item can be ordered from
http://www.springer.com/9783642103957

DOI: 10.1007/978-3-642-10395-7_2

Access Statistics for this chapter

More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-02
Handle: RePEc:spr:sprfcp:978-3-642-10395-7_2