EconPapers    
Economics at your fingertips  
 

Existence of Pseudo-Inverses for Diffusions

Christophe Profeta (), Bernard Roynette () and Marc Yor
Additional contact information
Christophe Profeta: Université Nancy I
Bernard Roynette: Université Nancy I
Marc Yor: Université Paris VI

Chapter Chapter 8 in Option Prices as Probabilities, 2010, pp 203-237 from Springer

Abstract: Abstract In this chapter, we continue the study of pseudo-inverses, extending the previous results of Chapter 7 to the general framework of linear diffusions. We shall focus here on increasing pseudo-inverses, and we shall deal with two cases: first, a diffusion taking values in ℝ, and solution of a particular SDE, and then, a general diffusion on ℝ+ starting from 0. More precisely, we shall prove that, to a positive diffusion X starting from 0, we can associate another diffusion $\overline{X}$ such that the tail probabilities of X are the distribution functions of the last passage times of $\overline{X}$ .

Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-10395-7_8

Ordering information: This item can be ordered from
http://www.springer.com/9783642103957

DOI: 10.1007/978-3-642-10395-7_8

Access Statistics for this chapter

More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-02
Handle: RePEc:spr:sprfcp:978-3-642-10395-7_8