Lévy Models
Norbert Hilber,
Oleg Reichmann,
Christoph Schwab and
Christoph Winter
Additional contact information
Norbert Hilber: Zurich University of Applied Sciences
Oleg Reichmann: Swiss Federal Institute of Technology (ETH)
Christoph Schwab: Swiss Federal Institute of Technology (ETH)
Christoph Winter: Allianz Deutschland AG
Chapter Chapter 10 in Computational Methods for Quantitative Finance, 2013, pp 123-143 from Springer
Abstract:
Abstract One problem with the Black–Scholes model is that empirically observed log returns of risky assets are not normally distributed, but exhibit significant skewness and kurtosis. If large movements in the asset price occur more frequently than in the BS-model of the same variance, the tails of the distribution, should be “fatter” than in the Black–Scholes case. Another problem is that observed log-returns occasionally appear to change discontinuously. Empirically, certain price processes with no continuous component have been found to allow for a considerably better fit of observed log returns than the classical BS model. Pricing derivative contracts on such underlyings becomes more involved mathematically and also numerically since partial integro-differential equations must be solved. We consider a class of price processes which can be purely discontinuous and which contains the Wiener process as special case, the class of Lévy processes. Lévy processes contain most processes proposed as realistic models for log-returns.
Keywords: Black-Scholes Case; Partial Integro-differential Equation (PIDE); Price Process; Pure-jump Models; Variance Gamma Process (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprfcp:978-3-642-35401-4_10
Ordering information: This item can be ordered from
http://www.springer.com/9783642354014
DOI: 10.1007/978-3-642-35401-4_10
Access Statistics for this chapter
More chapters in Springer Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().