EconPapers    
Economics at your fingertips  
 

Eigenvectors and Eigenvalues

Fuad Aleskerov, Hasan Ersel () and Dmitri Piontkovski
Additional contact information
Hasan Ersel: Sabanci University

Chapter 9 in Linear Algebra for Economists, 2011, pp 141-163 from Springer

Abstract: Abstract Let $$\mathcal{L}$$ be a linear space, $${\mathcal{L}}_{1}$$ be a linear subspace of $$\mathcal{L}$$ and A be a linear operator in $$\mathcal{L}$$ . In general, for any vector $$\mathbf{x} \in {\mathcal{L}}_{1}$$ , A x may not belong to $${\mathcal{L}}_{1}$$ .

Date: 2011
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sptchp:978-3-642-20570-5_9

Ordering information: This item can be ordered from
http://www.springer.com/9783642205705

DOI: 10.1007/978-3-642-20570-5_9

Access Statistics for this chapter

More chapters in Springer Texts in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:sptchp:978-3-642-20570-5_9