Eigenvectors and Eigenvalues
Fuad Aleskerov,
Hasan Ersel () and
Dmitri Piontkovski
Additional contact information
Hasan Ersel: Sabanci University
Chapter 9 in Linear Algebra for Economists, 2011, pp 141-163 from Springer
Abstract:
Abstract Let $$\mathcal{L}$$ be a linear space, $${\mathcal{L}}_{1}$$ be a linear subspace of $$\mathcal{L}$$ and A be a linear operator in $$\mathcal{L}$$ . In general, for any vector $$\mathbf{x} \in {\mathcal{L}}_{1}$$ , A x may not belong to $${\mathcal{L}}_{1}$$ .
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sptchp:978-3-642-20570-5_9
Ordering information: This item can be ordered from
http://www.springer.com/9783642205705
DOI: 10.1007/978-3-642-20570-5_9
Access Statistics for this chapter
More chapters in Springer Texts in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().