EconPapers    
Economics at your fingertips  
 

Risky Bonds, Floaters and Swaps

Stephen Lynn
Additional contact information
Stephen Lynn: National University of Singapore

Chapter 4 in Valuation for Accountants, 2020, pp 105-136 from Springer

Abstract: Abstract We turn from risk-free government debt to the more general case of risky bonds. These are usually valued using discount rates that are based on the risk-free rate plus some spread to reflect the higher risk. We start by discussing the concept of duration, a necessary input to our analysis. We discuss two types of spread: First, the Z-spread—a fixed spread above the zero curve or the term structure of spot interest rates; Second, the nominal spread—a fixed premium above the yield to maturity of a government coupon bond that is approximately similar to the bond being valued. We then turn to estimating the spread for a particular bond using a market approach—finding the spread for quoted bonds with a similar credit rating. This leads us to estimating a credit rating when not available—a synthetic credit rating, by comparing standard financial ratios for an issuer, with published averages for issuers with various ratings. We discuss how to use the Jarrow-Lando-Turnbull model to handle future changes in credit rating based on a transition matrix. We turn next to the valuation of floating-rate notes or floaters. We show that a floater with discount rates matching its coupon rates has a value at par. We use this fact to derive floater values under more general conditions. We turn next to a vanilla interest rate swap—an instrument where a fixed rate is exchanged for a floating rate, or vice-versa. We show how a vanilla interest rate swap can be valued using a replicating portfolio that includes a long position in a fixed-rate instrument paired with a short position in a floating-rate instrument, or vice-versa. Finally, we discuss complex instruments that have embedded options—convertible bonds, callable bonds, and puttable bonds. We discuss the Goldman-Sachs lattice model to value convertible bonds. We discuss how to use the Black-Derman-Toy lattice to value callable and puttable bonds.

Date: 2020
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sptchp:978-981-15-0357-3_4

Ordering information: This item can be ordered from
http://www.springer.com/9789811503573

DOI: 10.1007/978-981-15-0357-3_4

Access Statistics for this chapter

More chapters in Springer Texts in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:sptchp:978-981-15-0357-3_4