Bruhat Orders and the Sequential Selection of Indivisible Items
Brian Hopkins () and
Michael A. Jones ()
Additional contact information
Brian Hopkins: Saint Peter's College
Michael A. Jones: Montclair State University
A chapter in The Mathematics of Preference, Choice and Order, 2009, pp 273-285 from Springer
Abstract:
For two players with identical preferences, cake-cutting procedures, such as Cut-and-Choose (Brams & Taylor, 1996) and the Surplus Procedure (Brams, Jones, & Klamler, 2006), guarantee that each player receives exactly half of the cake, according to their preferences. In essence, receiving exactly half is a worst-case scenario because when their preferences are not identical, the opportunity often exists for both players to receive more than half of the cake, measured by their preferences. This potential reward is balanced by risk, as these differences in preferences provide an incentive for players to misrepresent their preferences in an effort to gain a more valuable piece. In contrast, players may not be able to exploit information about an opponent's preferences when indivisible objects are allocated to two players, even when the players ' preferences are different. Our purpose is to determine the structure of, relationship between, and frequency of two players' preferences for which players receive their worst or best possible outcomes when dividing a finite set of indivisible goods, independent of strategic behavior. Kohler and Chandrasekaharan (1971) pose and solve three optimization problems in which a finite set of players, with linear preference orders over the items, alternate taking turns selecting a number of items from a set of indivisible items. We adopt their framework, as Brams and Straffin (1979) do, to the case when two players alternate selecting a single item from a set of indivisible items. Although Kohler and Chandrasekaharan (1971) assume that players have values associated with each item and subsets are valued according to the sum of the values of its objects, like Brams and Straffin (1979), we assume that the players ' preferences for subsets of items are partially ordered, induced by the linear orders.
Keywords: Partial Order; Linear Order; Coxeter Group; Strategy Combination; Young Tableau (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stcchp:978-3-540-79128-7_15
Ordering information: This item can be ordered from
http://www.springer.com/9783540791287
DOI: 10.1007/978-3-540-79128-7_15
Access Statistics for this chapter
More chapters in Studies in Choice and Welfare from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().