EconPapers    
Economics at your fingertips  
 

Inter-Brain Synchrony and Innovation in a Zoom World Using Analog and Digital Manipulatives

Stephanie Balters (), Joseph M. Baker, Grace Hawthorne and Allan L. Reiss
Additional contact information
Stephanie Balters: Stanford University
Joseph M. Baker: Stanford University
Grace Hawthorne: Stanford University
Allan L. Reiss: Stanford University

A chapter in Design Thinking Research, 2021, pp 9-32 from Springer

Abstract: Abstract The ubiquity of technology in today’s world is exemplified by our ability to connect with each other instantly all around the globe. Advances in video conferencing capabilities combined with dramatic socio-dynamic shifts brought about by COVID-19 have redefined the ways in which humans interact in modern society. Human reliance on effective virtual interfacing (e.g., zoom conferencing) is evermore present in today’s COVID-19 world and will undoubtedly expand in the future. This unprecedented rise in digitalization has direct implications on the output and productivity of human interactions across all design (thinking) activities and practices. Working in a virtual environment limits access to traditional design thinking tools such as (analog) “artifacts” or “manipulatives” (e.g., physical prototypes, post-its, etc.). As both neuroscientists and design researchers, we are interested in elucidating the neurobiological signatures that underlie these adapted human-to-human interactions. Our overarching goal is to understand and uncover the differences in collaborative outcomes (e.g., creativity) and inter-brain synchrony in virtual versus in-person interactions using both analog and digital manipulatives. We proposed an emergent technology in brain-imaging—hyperscanning (i.e., measuring two brains simultaneously to derive measures of inter-brain synchrony) with functional near-infrared spectroscopy (fNIRS)—as an ideal brain-imaging technique to tackle this challenge. A better understanding of how the nuances of these dynamics impact inter-brain synchrony during an innovation event will provide new insights for interventions or technology that can help optimize successful interaction in both scenarios. To inform the design of future fNIRS hyperscanning studies, we review the existing fNIRS hyperscanning literature in this book chapter. On the basis of the existing literature, we highlight the current gaps in research regarding virtual interactions. We provide insight into current hurdles regarding fNIRS hyperscanning hardware and methodology and give recommendations on how to advance the field of fNIRS hyperscanning relevant to design research in the digital age.

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:undchp:978-3-030-76324-4_2

Ordering information: This item can be ordered from
http://www.springer.com/9783030763244

DOI: 10.1007/978-3-030-76324-4_2

Access Statistics for this chapter

More chapters in Understanding Innovation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-23
Handle: RePEc:spr:undchp:978-3-030-76324-4_2