EconPapers    
Economics at your fingertips  
 

Measuring the Collective Correlation of a Large Number of Stocks

Wei-Fang Niu and Henry Horng-Shing Lu

Chapter 8 in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning:(In 4 Volumes), 2020, pp 335-354 from World Scientific Publishing Co. Pte. Ltd.

Abstract: Market makers or liquidity providers play a central role for the operation of the stock markets. In general, these agents execute contrarian strategies so that their profitability depends on the distribution of stock returns across the market. The more widespread the distribution is, the more arbitrage opportunities are available. This implies that the collective correlation of stocks is an indicator for the possible turmoil in the market. This paper proposes a novel approach to measure the collective correlation of stock market with the network as a tool for extracting information. The market network can be easily constructed by digitizing pairwise correlations. While the number of stocks becomes very large, the network can be approximated by an exponential random graph model under which the clustering coefficient of the market network is a natural candidate for measuring the collective correlation of the stock market. With a sample of S&P 500 components in the period from January 1996 to August 2009, we show that clustering coefficient can be used as alternative risk measure in addition to volatility. Furthermore, investigations on higher order statistics also reveal the distinctions on the clustering effect between bear markets and bull markets.

Keywords: Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data (search for similar items in EconPapers)
JEL-codes: C01 C1 G32 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0008 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0008 (text/html)
Ebook Access is available upon purchase.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811202391_0008

Ordering information: This item can be ordered from

Access Statistics for this chapter

More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-04-13
Handle: RePEc:wsi:wschap:9789811202391_0008