Improving the Stock Market Prediction with Social Media via Broad Learning
Xi Zhang and
Philip S. Yu
Chapter 18 in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning:(In 4 Volumes), 2020, pp 677-736 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
This chapter discusses how to exploit various Web information to improve the stock market prediction. We first discuss the impacts of investors’ social network on the stock market, and then propose several information fusion methods, that is, the tensor-based model and the multiple-instance learning model, to integrate the Web information and the quantitative information to improve the prediction capability.
Keywords: Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data (search for similar items in EconPapers)
JEL-codes: C01 C1 G32 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0018 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0018 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811202391_0018
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().