Dynamic Term Structure Models Using Principal Components Analysis Near the Zero Lower Bound
Januj Juneja
Chapter 61 in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning:(In 4 Volumes), 2020, pp 2199-2250 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
This chapter examines the empirical performance of dynamic Gaussian affine term structure models (DGATSMs) at the zero lower bound (ZLB) when principal components analysis (PCA) is used to extract factors. We begin by providing a comprehensive review of DGATSM when PCA is used to extract factors highlighting its numerous auspicious qualities; it specifies bond yields to be a simple linear function of underlying Gaussian factors. This is especially favorable since, in principle, PCA works best when the model is linear and the first two moments are sufficient to describe the data, among other characteristics. DGATSM have a strong theoretical foundation grounded in the absence of arbitrage. DGATSM produce reasonable cross-sectional fits of the yield curve. Both of these qualities are inherited into the model when PCA is used to extract the state vector. Additionally, the implementation of PCA is simple in that it takes a matter of seconds to estimate factors and is convenient to include in estimation as most software packages have ready-to-use algorithms to compute the factors immediately. The results from our empirical investigation lead us to conclude that DGATSM, when PCA is employed to extract factors, perform very poorly at the ZLB. It frequently crosses the ZLB enroot to producing negative out-of-sample forecasts for bond yields. The main implication in this study is that despite its numerous positive characteristics, DGATSM when PCA is used to extract factors produce poor empirical forecasts around the ZLB.
Keywords: Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data (search for similar items in EconPapers)
JEL-codes: C01 C1 G32 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0061 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0061 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811202391_0061
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().