EconPapers    
Economics at your fingertips  
 

Sample Selection Issues and Applications

Hwei-Lin Chuang and Shih-Yung Chiu

Chapter 111 in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning:(In 4 Volumes), 2020, pp 3867-3885 from World Scientific Publishing Co. Pte. Ltd.

Abstract: In many occasions of regression analysis, researchers may encounter the problem of a non-random sample that leads to a biased estimator when using the OLS method. This study thus examines some related issues of sample selection bias due to non-random sampling. We first explain the source of bias caused by non-random sampling and then demonstrate that the direction of such bias in most cases cannot be ascertained based on prior information. By treating the sample selection as informative sampling, we can formulate the sample selection bias issue as an omitted variable problem in the regression model. Heckman (1979) proposed a two-stage estimation procedure to correct for selection bias. The first stage applies the Probit model to produce the estimated value of the inverse Mill’s ratio and then includes it into the second-stage regression model as an explanatory variable to yield unbiased estimators. As the sample selection rule may not always be derived from a yes–no choice, our study further utilizes Lee’s (1983) extension by applying the Multinomial Logit model into the first-stage estimation procedure to allow for its application with multi-choice sample selection rule. Since the pioneer works related to sample selection issues are mostly in the field of labor economics, we give two examples of an empirical study in labor economics to respectively demonstrate applications of the Probit correction approach and Multinomial Logit correction approach. Finally, we point out that the problem of a non-random sample is not limited to applications in economics. In the past 20 years, quite a few researchers have taken into account the issue of sample selection for studies of finance and management issues.

Keywords: Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data (search for similar items in EconPapers)
JEL-codes: C01 C1 G32 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0111 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0111 (text/html)
Ebook Access is available upon purchase.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811202391_0111

Ordering information: This item can be ordered from

Access Statistics for this chapter

More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-04-02
Handle: RePEc:wsi:wschap:9789811202391_0111