Bank Credit Risk Management Based on Weighted k-NN Method with Information Entropy
Zhonglong Wen
Chapter 97 in Economic Management and Big Data Application:Proceedings of the 3rd International Conference, 2024, pp 1077-1086 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
Since the global financial crisis of 2008, it has been common sense that it is significant to identify and evaluate the risk to survive in the banking industry. The goal is to achieve a more accurate and efficient method of managing bank credit risk. Weighted k-nearest neighbor (k-NN) with information entropy is proposed, and real data is utilized to conduct comparison experiments with other different models and algorithms. As the result shows, weighted k-NN with information entropy is the best tool in contrast with other models. The method of weight k-NN with entropy could be applied in reality.
Keywords: Big Data; Information Management; Economic; Data Applications; Blockchain; E-commerce (search for similar items in EconPapers)
JEL-codes: C63 C8 O14 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811270277_0097 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811270277_0097 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811270277_0097
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().