LECTURE 1 RESIDUE FORMULAE FOR BERNOULLI POLYNOMIALS AND VERLINDE SUMS
Michèle Vergne
Additional contact information
Michèle Vergne: Centre de Mathematiques, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
Chapter 13 in European Women in Mathematics, 2003, pp 227-244 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
AbstractWe discuss some of the properties of the Bernoulli series\[{{B(p,t)}\over{p!}} = - \sum\limits_{n \ne 0}{{{e^{2i\pi nt}}\over{(2i\pi n)^p}}}\] and higher dimensional analogues, the Witten series. Similarly, we discuss trigonometric series\[V(q,k) = \sum\limits_{n = 1}^{k - 1} {{1\over{4^q (\sin (\pi n/k))^{2q}}}\]and higher dimensional analogues, the Verlinde sums. We deduce the polynomial feature of these expressions, from multidimensional residues expressions due to A. Szenes.
Keywords: Mathematical Finance; Geometry; Cohomology (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789812704276_0013 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789812704276_0013 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789812704276_0013
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().