Dynamic Hedging
Robert Jarrow ()
Chapter 15 in The Economic Foundations of Risk Management:Theory, Practice, and Applications, 2017, pp 115-125 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
Under a complete market, dynamic hedging enables one to synthetically construct any derivative. The ability to synthetically construct implies the ability to remove all risks. When markets are incomplete, synthetic construction is usually impossible. In this case, dynamic hedging only enables one to super- and sub-replicate the payoffs to any derivative. To use dynamic hedging we need to assume an evolution for the underlying traded assets. For simplicity of the presentation, we assume that there is no interest rate risk and restrict ourselves to the market in Chapter 3. The subsequent analysis can easily be extended to include interest rate risk using the HJM model in Chapter 4. The same methodology presented below applies, but in an extended fashion with more complex notation.
Keywords: Risk Management; Derivatives; Value-at-Risk; Funding Risk; Financial Engineering (search for similar items in EconPapers)
JEL-codes: G31 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789813147522_0015 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789813147522_0015 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789813147522_0015
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().