Economics at your fingertips  

Robot-human-learning for robotic picking processes

Mathias Rieder and Richard Verbeet

A chapter in Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains, 2019, pp 87-114 from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management

Abstract: Purpose: This research paper aims to create an environment which enables robots to learn from humans by algorithms of Computer Vision and Machine Learning for object detection and gripping. The proposed concept transforms manual picking to highly automated picking performed by robots. Methodology: After defining requirements for a robotic picking system, a process model is proposed. This model defines how to extend traditional manual picking and which human-robot-interfaces are necessary to enable learning from humans to improve the performance of robots' object detection and gripping. Findings: The proposed concept needs a pool of images to train an initial setup of a convolutional neural network by the YOLO-Algorithm. Therefore, a station with two cameras and a flexible positioning system for image creation is presented by which the necessary number of images can be generated with little effort. Originality: A digital representation of an object is created based on the generated images of this station. The original idea is a feedback loop including human workers after a not successful object detection or gripping which enables robots in service to extend their ability to recognize and pick objects.

Keywords: Picking robots; Machine learning; Object detection; Computer vision; Human-robot-collaboration (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this chapter

More chapters in Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL) from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

Page updated 2022-07-20
Handle: RePEc:zbw:hiclch:209370