Machine learning in demand planning: Cross-industry overview
Nikolas Ulrich Moroff and
Saskia Sardesai
A chapter in Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains, 2019, pp 355-383 from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management
Abstract:
Purpose: This paper aims to give an overview about the current state of research in the field of machine learning methods in demand planning. A cross-industry analysis for current machine learning approaches within the field of demand planning provides a decision-making support for the manufacturing industry. Methodology: Based on a literature research, the applied machine learning methods in the field of demand planning are identified. The literature research focuses on machine learning applications across industries wherein demand planning plays a major role. Findings: This comparative analysis of machine learning approaches provides/creates a decision support for the selection of algorithms and linked databases. Furthermore, the paper shows the industrial applicability of the presented methods in different use cases from various industries and formulates research needs to enable an integration of machine learning algorithms into the manufacturing industry. Originality: The article provides a systematic and cross-industry overview of the use of machine learning methods in demand planning. It shows the link between established planning processes and new technologies to identify future areas of research
Keywords: Machine learning; Demand planning; Artificial intelligence; Digitalization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/209378/1/hicl-2019-27-355.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:hiclch:209378
DOI: 10.15480/882.2476
Access Statistics for this chapter
More chapters in Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL) from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().