A systematic classification of database solutions for data mining to support tasks in supply chains
Joachim Hunker,
Anne Antonia Scheidler and
Markus Rabe
A chapter in Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain, 2020, pp 395-425 from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management
Abstract:
Purpose: Our research shows that considering well suited NoSQL databases is beneficial for logistics tasks. For answering tasks we rely on the widespread methods of Data Mining. We stress that using relational databases as basis for Data Mining tools cannot cope with the growing amount of data and that using NoSQL databases can be an important step to address these issues. Methodology: This paper discusses Data Mining in the context of Supply Chain Management tasks in logistics and its requirements on databases. The paper demonstrates that using NoSQL databases as basis for Data Mining process models in logistics is a very promising approach. The research is based on a case study, whose core element is the analysis of different well established studies. Findings: The paper presents results which show that Data Mining tools widely support NoSQL databases through available interfaces. Findings are presented in a comparison table which considers dimensions such as Data Mining tools and supported NoSQL databases. To show practical feasibility, a Data Mining tool is used on data of a Supply Chain stored in a NoSQL database. Originality: The novelty of this paper emerges from addressing issues that have so far been insufficiently analyzed in the scientific discussion. The modular structure of the addressed research method ensures scientific traceability. Breaking down tasks and their requirements on databases in the field of Data Mining is a first step towards meeting trends like Big Data and their challenges.
Keywords: Logistics; Industry 4.0; Digitalization; Innovation; Supply Chain Management; Artificial Intelligence; Data Science (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/228928/1/hicl-2020-29-395.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:hiclch:228928
DOI: 10.15480/882.3121
Access Statistics for this chapter
More chapters in Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL) from Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().