Economics at your fingertips  

Predicting Bond Betas using Macro-Finance Variables

Nektarios Aslanidis (), Charlotte Christiansen and Andrea Cipollini ()
Additional contact information
Nektarios Aslanidis: University Rovira Virgili, CREIP, Postal: Department of Economics, 43204 Reus, Catalonia, Spain
Andrea Cipollini: University of Palermo, Postal: Department of Economics, Management and Statistics, University of Palermo, Viale delle Scienze, Palermo, Italy

CREATES Research Papers from Department of Economics and Business Economics, Aarhus University

Abstract: We conduct in-sample and out-of-sample forecasting using the new approach of combining explanatory variables through complete subset regressions (CSR). We predict bond CAPM betas and bond returns conditioning on various macro-fi?nance variables. We explore differences across long-term government bonds, investment grade corporate bonds, and high-yield corporate bonds. The CSR method performs well in predicting bond betas, especially in-sample, and, mainly high-yield bond betas when the focus is out-of-sample. Bond returns are less predictable than bond betas.

Keywords: bond betas; complete subset regressions; corporate bonds; macro-?finance variables; model confi?dence set; risk-return trade-off. (search for similar items in EconPapers)
JEL-codes: G12 G14 (search for similar items in EconPapers)
New Economics Papers: this item is included in nep-fmk
Date: 2017-01-10
References: Add references at CitEc
Citations Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in CREATES Research Papers from Department of Economics and Business Economics, Aarhus University
Series data maintained by ().

Page updated 2018-03-10
Handle: RePEc:aah:create:2017-01