The Order of Variables, Simulation Noise and Accuracy of Mixed Logit Estimates
Marco Palma (),
Yajuan Li,
Dmitry Vedenov and
David Bessler ()
No 235990, 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts from Agricultural and Applied Economics Association
Abstract:
The simulated choice probabilities in Mixed Logit are approximated numerically from a multidimensional integral with a mixing distribution from a multivariate density function of the random parameters. Theoretically the order in which the variables are estimated should not matter; however, due to the inherent simulation ‘noise’ the magnitude of the estimated coefficients differs depending on the arbitrarily selected order in which the random variables enter the estimation procedure. This problem is exacerbated with a low number of draws or if correlation among coefficients is allowed. If correlation among the random parameters is allowed the variable ordering effects arise from simulation noise and from the Cholesky factorization used to allow for correlation. Ignoring the potential ordering effects in simulated maximum likelihood estimation methods seriously compromises the ability for replicating the results and can inadvertently influence policy recommendations. The simulation noise is independent of the number of integrating dimensions for random draws, but it increases for Halton draws. Hence, better coverage is achieved with Halton draws for small integrating dimensions, but random draws provide better coverage for larger dimensions.
Keywords: Research; Methods/; Statistical; Methods (search for similar items in EconPapers)
Pages: 25
Date: 2016
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://ageconsearch.umn.edu/record/235990/files/OrderV2-short.pdf (application/pdf)
Related works:
Journal Article: The order of variables, simulation noise, and accuracy of mixed logit estimates (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ags:aaea16:235990
DOI: 10.22004/ag.econ.235990
Access Statistics for this paper
More papers in 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts from Agricultural and Applied Economics Association Contact information at EDIRC.
Bibliographic data for series maintained by AgEcon Search ().