EconPapers    
Economics at your fingertips  
 

Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models

Philippe Lambert () and Oswaldo Gressani
Additional contact information
Philippe Lambert: Université catholique de Louvain, LIDAM/ISBA, Belgium

No 2023024, LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)

Abstract: Laplace P-splines (LPS) combine the P-splines smoother and the Laplace approximation in a unifying framework for fast and flexible inference under the Bayesian paradigm. The Gaussian Markov random field prior assumed for penalized parameters and the Bernstein-von Mises theorem typically ensure a razor-sharp accuracy of the Laplace approximation to the posterior distribution of these quantities. This accuracy can be seriously compromised for some unpenalized parameters, especially when the information synthesized by the prior and the likelihood is sparse. Therefore, we propose a refined version of the LPS methodology by splitting the parameter space in two subsets. The first set involves parameters for which the joint posterior distribution is approached from a non-Gaussian perspective with an approximation scheme tailored to capture asymmetric patterns, while the posterior distribution for the penalized parameters in the complementary set undergoes the LPS treatment with Laplace approximations. As such, the dichotomization of the parameter space provides the necessary structure for a separate treatment of model parameters, yielding improved estimation accuracy as compared to a setting where posterior quantities are uniformly handled with Laplace. In addition, the proposed enriched version of LPS remains entirely sampling-free, so that it operates at a computing speed that is far from reach to any existing Markov chain Monte Carlo approach. The methodology is illustrated on the additive proportional odds model with an application on ordinal survey data.

Keywords: Additive model; Bayesian P-splines; Laplace approximation; Skewness (search for similar items in EconPapers)
Pages: 17
Date: 2023-11-07
Note: In: Statistical Modelling, 2023, vol. 23(5-6), p. 409-423
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvar:2023024

DOI: 10.1177/1471082X231181173

Access Statistics for this paper

More papers in LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().

 
Page updated 2025-03-19
Handle: RePEc:aiz:louvar:2023024