EconPapers    
Economics at your fingertips  
 

An Analytical Shrinkage Estimator for Linear Regression

Nathan Lassance ()
Additional contact information
Nathan Lassance: Université catholique de Louvain, LIDAM/LFIN, Belgium

No 2023003, LIDAM Reprints LFIN from Université catholique de Louvain, Louvain Finance (LFIN)

Abstract: We derive an analytical solution to the optimal shrinkage of OLS regression coefficients toward a constant target, under any first two moments of predictors. The estimator closely mimics the prediction performance of ridge penalty, which admits no general analytical solution.

Keywords: linear regression; prediction error; shrinkage; out-of-sample (search for similar items in EconPapers)
Pages: 6
Date: 2023-02-01
Note: In: Statistics & Probability Letters, 2023, vol. 194, 109760
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ajf:louvlr:2023003

DOI: 10.1016/j.spl.2022.109760

Access Statistics for this paper

More papers in LIDAM Reprints LFIN from Université catholique de Louvain, Louvain Finance (LFIN) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Séverine De Visscher ().

 
Page updated 2025-03-19
Handle: RePEc:ajf:louvlr:2023003