Testing and Improving Commercial Real Estate Market Segmentations With Cluster Analysis and Neural Network Techniques
Franz Fuerst and
Gianluca Marcato ()
ERES from European Real Estate Society (ERES)
Abstract:
Market segmentation is a standard concept in both strategic marketing and investment analysis. The standard approach in the real estate market context is to segment markets by regions and property types. While this approach provides investment analysts with a powerful basic classification grid, its capability of predicting the performance and risk characteristics of direct investments is rather limited. The corollary of this is that a classification based on the two criteria yields segments that are too heterogeneous in their investment performance. As this is an issue of potential importance to investment analysts, this paper tests the predictive power of existing segmentations. In a further step, we apply a two-step cluster algorithm to generate new clusters based on additional investment characteristics and information relating to the tenant base and lease structure of a property. To this aim, we analyze the very large IPD commercial real estate database for the UK over the period 1980-2006. Finally, we apply both discriminant analysis and a non-parametric neural network estimation to test the ability of various segmentations to predict total returns. Both methods confirm that the segments determined by cluster analysis yield superior explanatory power. We conclude that the new segments are a potentially useful tool for commercial real estate investment analysis.
JEL-codes: R3 (search for similar items in EconPapers)
Date: 2009-01-01
References: Add references at CitEc
Citations:
Downloads: (external link)
https://eres.architexturez.net/doc/oai-eres-id-eres2009-244 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arz:wpaper:eres2009_244
Access Statistics for this paper
More papers in ERES from European Real Estate Society (ERES) Contact information at EDIRC.
Bibliographic data for series maintained by Architexturez Imprints ().