A Data Mining Approach to Indirect Inference
Michael Creel (michael.creel@uab.cat)
UFAE and IAE Working Papers from Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC)
Abstract:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Keywords: simulation-based estimation; data mining; dynamic panel data; vector autoregression; bias reduction Abstract JEL codes: C13, C14, C15, C33 (search for similar items in EconPapers)
Pages: 23
Date: 2009-10-13, Revised 2009-10-25
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://pareto.uab.es/wp/2009/78809.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aub:autbar:788.09
Access Statistics for this paper
More papers in UFAE and IAE Working Papers from Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC) Contact information at EDIRC.
Bibliographic data for series maintained by Xavier Vila (xavier.vila@uab.cat).