Microeconomic models with latent variables: applications of measurement error models in empirical industrial organization and labor economics
Yingyao Hu
No 03/15, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
This paper reviews recent developments in nonparametric identification of measurement error models and their applications in applied microeconomics, in particular, in empirical industrial organization and labor economics. Measurement error models describe mappings from a latent distribution to an observed distribution. The identification and estimation of measurement error models focus on how to obtain the latent distribution and the measurement error distribution from the observed distribution. Such a framework may be suitable for many microeconomic models with latent variables, such as models with unobserved heterogeneity or unobserved state variables and panel data models with fixed effects. Recent developments in measurement error models allow very flexible specification of the latent distribution and the measurement error distribution. These developments greatly broaden economic applications of measurement error models. This paper provides an accessible introduction of these technical results to empirical researchers so as to expand applications of measurement error models.
Date: 2015-01-26
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0315.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:03/15
DOI: 10.1920/wp.cem.2015.0315
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().