Higher order properties of GMM and generalised empirical likelihood estimators
Whitney K. Newey and
Richard Smith
No 04/03, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
In an effort to improve the small sample properties of generalized method of moments(GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, beingmembers of a class of generalized empirical likelihood (GEL) estimators. We use this structure to compare their higher order asymptotic properties. We find that GEL has no asymptotic bias due to correlation of the moment functions with their Jacobian, eliminating an important source of bias for GMM in models with endogeneity. We also find that EL has no asymptotic bias from estimating the optimalweight matrix, eliminating a further important source of bias for GMM in panel data models. We give bias corrected GMM and GEL estimators. We also show that bias corrected EL inherits the higher order property of maximum likelihood,that it is higher order asymptotically effcient relative to the other bias corrected estimators.
Date: 2003-06-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0403.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:04/03
DOI: 10.1920/wp.cem.2003.0403
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson (cemmap.repec@ifs.org.uk).