Likelihood inference and the role of initial conditions for the dynamic panel data model
Jose Diogo Barbosa and
Marcelo Moreira
No 04/17, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
Lancaster (2002) proposes an estimator for the dynamic panel data model with homoskedastic errors and zero initial conditions. In this paper, we show this estimator is invariant to orthogonal transformations, but is inefficient because it ignores additional information available in the data. The zero initial condition is trivially satisfied by subtracting initial observations from the data. We show that di fferencing out the data further erodes efficiency compared to drawing inference conditional on the rst observations. Finally, we compare the conditional method with standard random eff ects approaches for unobserved data. Standard approaches implicitly rely on normal approximations, which may not be reliable when unobserved data is very skewed with some mass at zero values. For example, panel data on firms naturally depend on the first period in which the firm enters on a new state. It seems unreasonable then to assume that the process determining unobserved data is known or stationary. We can instead make inference on structural parameters by conditioning on the initial observations.
Date: 2017-01-20
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0417.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:04/17
DOI: 10.1920/wp.cem.2017.0417
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().